Are Algorithms becoming our Overlords?

algosAn apocalyptic piece from the Evening Standard last Easter which highlights all the different points in our lives where algorithms are controlling what we see or hear or do. A few examples include:

  • social network feeds
  • travel websites
  • song compositions
  • pension investments.

Why should we be concerned? As Robert Colvile, author of The Great Acceleration, mentions in the context of financial markets:

‘The real danger is that it can all happen at speeds to which humans can’t react. Firms go bankrupt or markets get shattered before anyone’s really realised what’s going on, which is why it’s really important to have the right safeguards in place.’

Elon Musk wants to open source Artificial Intelligence


Taken from Wired‘s article two months ago:

This morning, OpenAI will release its first batch of AI software, a toolkit for building artificially intelligent systems by way of a technology called “reinforcement learning”—one of the key technologies that, among other things, drove the creation of AlphaGo, the Google AI that shocked the world by mastering the ancient game of Go. With this toolkit, you can build systems that simulate a new breed of robot, play Atari games, and, yes, master the game of Go.

He envisions OpenAI as the modern incarnation of Xerox PARC, the tech research lab that thrived in the 1970s. Just as PARC’s largely open and unfettered research gave rise to everything from the graphical user interface to the laser printer to object-oriented programing, Brockman and crew seek to delve even deeper into what we once considered science fiction. PARC was owned by, yes, Xerox, but it fed so many other companies, most notably Apple, because people like Steve Jobs were privy to its research. At OpenAI, Brockman wants to make everyone privy to its research.

But along with such promise comes deep anxiety. Musk and Altman worry that if people can build AI that can do great things, then they can build AI that can do awful things, too. They’re not alone in their fear of robot overlords, but perhaps counterintuitively, Musk and Altman also think that the best way to battle malicious AI is not to restrict access to artificial intelligence but expand it. That’s part of what has attracted a team of young, hyper-intelligent idealists to their new project.

Giving up control is the essence of the open source ideal. If enough people apply themselves to a collective goal, the end result will trounce anything you concoct in secret. But if AI becomes as powerful as promised, the equation changes. We’ll have to ensure that new AIs adhere to the same egalitarian ideals that led to their creation in the first place. Musk, Altman, and Brockman are placing their faith in the wisdom of the crowd. But if they’re right, one day that crowd won’t be entirely human.

You can read the full text here.

Artificial Intelligence set to dominate Financial Services


A recent article by a Foreign-Exchange Journalist suggests the ‘Skynet’ of Finance is not too far away.

The article points  to the huge improvements in Artificial Intelligence and the bullishness of Financial Services firms for takeover by technology in their industry. In particular, Transfer/Payments business expect to lose 28% of their business to FinTech in the next 5 years, and Banks expect to lose 24% of their business.

The silver lining to this takeover could however be, the article points out, the greater emphasis on the ‘human touch’ in key customer interfacing areas. For example, a human hand at the wheel to prevent another ‘flash crash’ or a human interpreter of the decisions of an Artificial Intelligence made lending / investment decision.

Whatever happens, we are likely to see more automation, lower costs for the customer, and smarter decision making – albeit in the near term.

Hedge funds are luring away Tech’s AI superstars

hedgefundsai An arms race has resumed amongst the world’s biggest hedge funds. Seeing the potential of the technologies produced at some of the most prolific Machine Learning groups in big tech companies such as Google and Facebook, a recent article notes that hedge funds are lifting lead Data Scientists to work on building better alpha strategies.

In the past, algorithmic trading prided itself on hiring highly skilled statisticians to sculpt informative signals and combine them in a state-of-the-art model to predict movements in prices. With the success of deep learning software, such as IBM’s Watson, hedge funds now see potential in throwing their financial big data at artificial intelligence at these artificial intelligence black boxes to predict alpha.

Bridgewater hired David Ferrucci, former lead engineer at IBM for developing Watson, Renaissance Technologies was founded by Bob Mercer and Peter Brown, former language recognition leads at IBM, and recently Blackrock hired Bill MacCartney, a former Google scientist.

For these robotics rockstars moving from Tech to Finance, one downside is that there work becomes a lot more secretive. The nature of algorithmic trading is very hush hush with all hedge funds in direct competition with each other. Compared to publishing research papers at IBM or Google, the traders at these funds will have to keep their advances to themselves – which is a loss for the rest of the scientific community.

Self driving cars must learn to kill

As we move towards more technological capability and deferring judgement and decision to artificial intelligence, some difficult ethical questions will come up.


A recent article in TechnologyReview highlights how self-driving cars will be programmed to make tradeoffs in difficult situations. The use of the image to the left demonstrates the type of situation in which a self driving car may have to deliberately chose to kill one person to save many people.

It gets even more confusing when we think about one adult vs one child, a cyclist vs a car, a passenger vs a pedestrian. There will be a huge new body of research in practical ethics and applied philosophy that companies such as Google will be looking to for guidance.